
a Fermi National Accelerator Laboratory 
, 

FERMILAB-Pub-SO/SO-THY 

Can Color Be Seen in Deep-Inelastic Scattering?* 

SEKAZI K. MTINGWA 
Fermi National Accelerator Laboratory’ 

P.O. Box 500, Batavia, Jllinois 60510 (USA) 
and 

Center for Theoretical Physics, Department of Physics and Astronomy 
University of Maryland, College Park, Maryland 20742 (USA) 

and 

MURAT ljZER 
Department of Physics and Astronomy, University of Maryland 

College Park, Maryland 20742 (USA) 

l’bember 178Q 
ABSTRACT 

We discuss those aspects of the Pati-Salam grand unification scheme which 

are relevant to deep-inelastic lepton-nucleon scattering. The naive lowest order 

parton model with massless quarks and massive gluons is presented, and we 

calculate higher order corrections to the parton distribution functions above the 

threshold for color production using a covariant formulation of the Aftarelli-Parisi 

program. Below the threshold for color production, we add charm distribution 

functions to the Owens-Reya parton distributions and get good agreement with the 

data up to Q2 @ 100 GeV2. Above color threshold, we calculate in detail what 

effect color production would have on the nucleon isoscalar structure function F 2 

to leading nontrivial order in Pati-Salam QCD with massive gluons. Finally, we 

comment on the present status of experimental attempts to see color in deep- 

inelastic scattering. 
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1. INTRODUCTION 

For some time now there has been considerable interest in testing the 

standard massless gluon quantum chromodynamics (QCD) model of the strong 

interactions.1’2 Recently, Ball et al.3 generated some excitement when they 

reported an anomalously large increase in the isoscalar nucleon structure function 

F2(x, Q2) in deep-inelastic muon-nucleon scattering. Lehman4 and 6zer and Pati 

have interpreted this anomalous rise in F2 as due to the excitation of color 

hadronic final states. Other experimental groups6 have tried with no success to 

observe this effect seen by Ball et al.; however, we shall point out below what the 

kinematic region is which such experiments should exhaust before ruling out 

entirely the possibility of observing color in deep-inelastic scattering. 

The Pati-Salam theory7 is only one scenario for unifying the strong, weak, 

and electromagnetic interactions. But any such scheme starts with the minimal 

gauge group 

92 = SU(3f @ SU(2) @U(l) , (1.1) 

where SU(3)’ corresponds to the strong interactions and SU(2)@ U(I) to the 

theory 899 of the weak and electromagnetic interactions. Leptons lie in SU(3)’ 

singlets and quarks in SU(3)’ triplets. Moreover, lefthanded quarks and leptons 

belong to doublets under weak W(2) whereas righthanded quarks and leptons belong 

to weak SU(2) singlets. All the fermions in the theory occur in generations based 

upon their masses: 



3 FERMILAB-Pub-80/80-THY 

where the three colors are denoted by red (r), yellow (y), and blue (b). This mass 

hierarchy is as yet poorly understood. 

In the SU(5) unification scheme of Georgi and Clashow lo SU(5) breaks down 

to SU(3)‘@ SU(2) ‘3 U(1) at a mass scale of the order of lOI CeV and this group 

subsequently breaks down to SU(3)‘@ U(1) at a mass scale of the order of lo2 GeV. 

Each fermion generation lies in an SU(5) reducible representation 3 @ 10, where the 

SU(3)‘@ SU(2) decompositions of 5 and 10 are as follows: 

5 = UC, 2)@ (3C, I) (1.2a) 

10 = UC, 1)@(3c, 2)@ (7c, 1) , (1.2b) 

with the lo-representation being the antisymmetrized product of two 5’s. Then, for 

the first fermion generation we have 

T=( ya ) 
10 = (1 Ii&e+) I 

(1.3a) 

(1.3b) 

and similarly for the other generations. The SU(5) 24-representation for the gauge 

bosons transforms under SU(3)‘aS SU(2) as follows: 

24 = (8’, 1) @ UC, 3) @(I’, 1) @ (3’, 2) @ (5’, 2) (1.4) 

where (8’, I) corresponds to the eight massless gluons mediating the strong inter- 

actions, (I’, 3) +I9 (I’, I) corresponds to the weak and electromagnetic y, Z, W’s, and 

(3’, 2) @ @, 2) corresponds to the 12 superheavy weak doublet and color triplet 
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xc ’ 
( i YC 

+ antiparticles 

whose masses are :: 1Ol5 GeV and which couple to diquarks and leptoquarks, thus 

leading to the decay of the proton. 

In this massless gluon scheme, the scaling behavior of the structure functions 

in deep-inelastic lepton-nucleon (EN) scattering has been worked out some time ago 

by various authors.l’2’l’ However, a more useful phenomenological approach is 

obtained if one writes the structure function F 
L.N 
2 

from the lowest order simple 

parton picture in terms of quark distribution functions as follows: 

FiN(x) = zefx [qi(x) + Qi(x) 1 
i 

,I2 (1.5) 

where qi(x) and qi(x) measure the probability for finding a parton of type i with 

momentum fraction x of the parent nucleon and ei is the charge of the ith parton. 

One then indudes the higher order Q2 corrections to F iN by replacing the qi(xl and 

qi(x) in Eq. (1.5) by their Q2-dependent solutions obtained from the Altarelli-Parisi 

equations. I3 It is this approach which we apply to the Pati-Salam model. 

In the next section we review the most important features of the Pati-Salam 

model necessary for a thorough discussion of deep-inelastic scattering. Compari- 

sons are made to the SU(5) unification scheme described above. In Sec. III we 

describe the lowest order parton model description of LN deep-inelastic scattering. 

In Sec. IV, we calculate the parton transition functions necessary for calculating 

the higher order corrections to the parton distribution functions above the 

threshold for color production. In Sec. V we discuss the phenomenology of deep- 

inelastic scattering below the threshold for color production, adding charm 

distribution functions to the Owens-Reya parton distribution functions. 
14 
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Comparisons are made to recent experimental data. In Sec. VI, we use the parton 

transition functions derived in Sec. IV to calculate the Q2 dependence of the gluon 

distribution inside the nucleon. The main results are discussed in Section VII. We 

choose various values for the color threshold mass Mcol and graph the percentage 

increase in F ;N due to the color contribution to the structure function for various 

values of x. In addition we discuss the results of Ball et al.3 Finally, in Section VIII 

we discuss our results and offer some concluding remarks. 

II. THE PATI-SALAM THEORY7”5’16 

In this section, we review those aspects of the Pati-Salam theory which are 

important for the following sections’ discussions of deep-inelastic scattering. As 

for the SU(5) scheme, we again start with the minimal gauge group necessary for 

describing the strong, weak, and electromagnetic interactions: 

Gmin = SU(3)c,+, @ SU(21L 63 U(l) f (2.1) 

where L and R denote left and righthandedness. We embed Gmin inside 

G = [SU(4)L@ SU(41Rl Co~orcmJ(4)L@su(4)Rlf’avor = [SU(4)14 . (2.2) 

This is called chiral color gauging and leads to interesting possibilities as we shall 

see shortly. There are four independent coupling constants, one corresponding to 

each SU(4) subgroup; therefore, to reduce that number to one coupling constant gG 

we impose the discrete symmetries 
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flavor ++ color 

left ++ right 

The basic fermion multiplet--where for our purposes we can ignore the t and 

b quarks--is as follows: 17 

P, Py Pb pi = “e P, Py Pb pi = “e 
F F 

L,R = L,R = 

L,R L,R 

, (2.3) 

where rows denote flavor and columns denote color, with the fourth color being 

dubbed “lilac” for lepton. The flavor (color) 15-fold gauge bosons WL (V,) couple 

to FL FL, with the W’s containing the usual weak and electromagne ic gauge R P 

boso R s a& the V’s containing the octet of color gluons: 

z1 V(8) - 
VL = 

x2 

R L---L1 x1 X2 x3 /& L 

R 

The couplings of VL to the fermions is given by 

R 

2 
gluon = c &$;ir:yqb’LYp $L,,($ + L + R 

fl avers 

, (2.4) 

(2.5a) 
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9X = 
c z 

g&iiYIJ. t),x&, + t. + R + h.c. 

i=r,y,b flavors 

(2.5b) 

.9So = 1 -( 2) ( 1 ~i~~qi-3EIU,)LS~II+L~R , (2.5~) 

flavors i=r,y,b 

where q denotes quark fields, 1 denotes leptons, and 1 are the SU(3) matrices. As 

in the SU(5) scheme, we see here the possibility for proton decay through the 

couplings of Xi to 49,. 

The next important feature is the spontaneous breakdown of the flavor and 

color symmetries. We begin with the breakdown of the color symmetry. Parity 

conservation in the strong interactions implies that SU(4$ @ SU(4$ breaks so as to 

conserve left-right symmetry in the 3-color sector. Also, the mass of the X- 

particles can be given a lower bound since they induce the unobserved transition 

KL+ i;e through their couplings to (Eel and (1~ ). From the experimental upper limit 

for this process, one gets 

(2.6) 

In breaking the SU(4): @ SU(4): color symmetry, there are two interesting 

possibilities: 7,15,18 

MI >> IO4 GeV MB 210 
4 

GeV 

(9 SU(4)C,@SIJ(4)~ ____) SU(4~c,+,-----+ su(3)c@ 

t 

U(I) L+R Or 
(2.7a) 

UWL@ U(llR 
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MI > IO4 GeV 

(ii) W(4)‘@ W(4)’ 
‘(I)L+R 

L 
R - su(3@WJ0~c, 

iv U(OL@ U(l), 
(2.7b) 

1 
SU(3$+R 

Light Mass M,I =few GeV 

In both cases one generates both vector and axial vector color gluons. But in case 

(ii) the axial vector gluons are low in mass whereas in case (i) they are superheavy. 

The U(l)L(RJ correspond to the 15th generators of SU(4&,) and the gauge 

particles SrcRy with UE+R (1) being their diagonal sum. In both cases (i) and (ii) the 

X gauge particles are superheavy with masses probably much larger but at least 

bounded by Eq. (2.6). 

If low mass axial vector gluons are found, they would supplement the standard 

vector QCD, possibly affecting hyperfine splittings in charmonium spectroscopy. 

Also, their existence and the resulting larger low energy residual color symmetry as 

compared to the more standard case (i) would lead to a stronger growth in the color 

coupling constant relative to the flavor coupling constant for decreasing momen- 

tum, thus lowering the unification mass from the usual 1015 GeV to lo5 GeV. 
18 

The flavor symmetry breaking would proceed as follows: 

M, ilO4 GeV MI1 $MW + , (2.8) 

SUWL @ SU(4)R - SU(21L @ SU(2jR ----AL SU(2)L@ U(l)R 

where electron polarization in 5 decay gives MW > 300 GeV.15 Combining the 
R 

+ _ 

surviving symmetry here with the surviving color-singlet piece U(IjL @ U(UR or 

U(I)L+R we get 

G 

I 
UWL@ WR 

flavor = SU(2jL@ u(l)R@ 
or U(I)L+R 

(2.9) 
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Subsequent symmetry breaking proceeds via a mass-scale -< MW 
+ using the Higgs 

fundamental sets B and C which transform under [ SU(S(% SU(4)R1Co’or @ 

I SU(41, c3 SU(4),1 f’avor as B = (l,ij, 1, 4) and C = (F, 1, 4, 1) and having vacuum 

expectation values 

<B> = 

<c >= 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 b4 I 

c, 0 0 "1 

0 

c, 

0 

0 

' 

0 0 Cl 0 

0 0 0 c4 
J 

(2. IOa) 

(2. lob) 

with CL = 0 or few GeV. The final level of symmetry breaking proceeds as follows: 

G flavor = su(2)L 3 UWR@ UwL+R 

i 
<B> 

su(2)L@ U(1) 

(2.11) 

While b4 and c4 give mass to the weak gauge particles, cl provides a mechanism of 

giving mass to the octet of color gluons, since CC> breaks color as well as flavor. 

Thus, whether or not there exists an octet of light axial gluons, the low energy 

three-color symmetry has two interesting possibilities: 
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(i) c = 0 yields the standard QCD theory with massless neutral vector color I 

gluons and fractionally charged (possibly permanently confined) quarks inside the 

physical hadrons; 

(ii) c, c few GeV leads to both charged and neutral vector color gluons of a 

few GeV in mass and integrally charged and unconfined quarks inside the physical 

hadrons. 

It is the second possibility on which we will primarily focus in the later 

sections. In this case there are four neutral and four charged color gluons, all of 

which acquire the same mass p G, and an effective global SU(3)’ symmetry 

survives, serving as a good classification symmetry. 

The SU(4)’ gauge fields are 

v = 

where 

with Vi,, 2 
, ,...a being the canonical octet of gluon fields. 

I (2.12) 

(2.13a) 

(2.13b) 

(2.13c) 
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Further, since the Higgs B and C carry both flavor and color, the spontaneous 

symmetry breaking leads to a mixing of the color and flavor gauge particles. I9 For 

example, the massless photon A has the usual flavor piece W” plus some color U” 

mixed in where 

u” = !wTV3 + V,) (2.14) 

Similarly, there is a gluon U of mass rnfi sgsc, s few GeV which is the 

orthogonal combination of W” and U’. So, we have 

A = cos6 W”+sin6 U” 

U = -sin6 W”+cos6 U” 

where 

, 

and the coupling constant subscripts refer to flavor (f) and strong (s). The mixing 

of the charged flavor and color gauge particles is negligible with mass dependent 

mixing angles tirn /m v+ Wf 12gf/gs -c<< 1. 

The fermion electric charges in the Pati-Salam theory can be obtained by 

first defining flavor and color pieces: 

Qflav 

Q co1 E F; +hF; 

(2.15a) 

(2.15b) 

(2.16) 

(2.17a) 

(2.17b) 
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where Fi (FF) are the generators of SU(4) (SU(4)‘). Then, the fermion charges are 

given by 

Q = Qflav (fractional charges) (2.18a) 

Q = Qflav + Qco, (integral charges) , (2.18b) 

where the fractional charge case corresponds to cl = 0 and the integral charge case 

corresponds to cl b0. Hence, the charges corresponding to the fermion matrix F 

given in Eq. (2.3) are as follows: 

Fractional 

2 
5 : 2 

3 0 

I 1 1 -- 
3 

_- 
3 _- 

3 
-1 

; _- -f -f -1 

2 2 
J- 5 0 

Integral 

0 Cl +I 0 

-1 0 0 -1 

-I 0 0 -1 

0 +I +I 0 I 
(2.19) 

Note that Qcol(leptons) = 0 so that the lepton charges are the same in both cases. 

Without being too laborious, we hope that we have touched upon the main 

features of the Pati-Saiam theory necessary for the following discussion of deep- 

inelastic scattering. In the next section, we present only the lowest order content of 

the Pati-Salam theory for this process. 
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III. DEEP-INELASTIC SCATTERING WITH MASSIVE GLUONS 

As opposed to the standard massless QCD model, the massive gluon QCD 

model contained in the Pati-SaIam theory allows the possibility of color produc- 

tion.19 If we denote color nonsinglet states by Xco, and color singlet flavor states by 

Xflav, then the total indusive amplitude A(RN + 1 + X1 contains contributions from 

both AC&N -f 11+ Xflav ) and A( LN + a+ Xco,). Of course, the latter contributes only 

if the outgoing state’s energy is above some threshold for producing color nonsinglet 

hadronic states. In that case, the order e2 diagrams for AIQN + p. + Xco,) would be 

as shown in Fig. 1. Thus, one calculates 

A@.N+9.+Xco,) = e’xyua tX 
col I JKo, IN> 

= e2y(q]m<52) ‘Xco,, 3Eo, IN> , (3.1) 

where we can define the damping factor 

-m” 2 

a 5 
u 

q2 - rnfi* 
(3.2) 

For the amplitude A( I1N + II + X flay), only the first diagram in Fig. 1 contributes 

with Xco, replaced by Xflav and we get 

A(9.N + il + Xflav) = 
e2-jiv II 

q2 
” <XflavI %avI N’ 9 (3.3) 

where 
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3u 
flav = c 

a=red,yellow,blue 

- Gype + f;v”u) (3.4a) 

JP co1 = qzp;1 c - f qred ?qred + $ !ye]lowYFl qyellow + f qbluey’qblue 
(3’4b) 

, , 9 

Below the threshold for color production, only the photon y contributes and it 

sees only the fractional flavor charges of the quark pat-tons. Hence, there is no 

observable difference between the cl = 0 and c, f0 alternatives (see Section II). 

However, above the color threshold, both y and 6 contribute, quark partons 

interact through their flavor plus color integral charges, and the charged members 

of the color gluon octet (V ‘, V 
’ K* 

‘) become active partons. The c1 = 0 possibility 

does not permit a color threshold, and thus the experimental verification of the 

existence of such a threshold would place the standard massless gluon QCD model 

in jeopardy. 

In the following we focus on the cI b 0 case and write the structure functions 

as follows:20 

Fi = Fiflav + FiCo$(W - Mco,) ’ 

with 

Q2 

(3.5) 

(3.6) 

and where Q2 is the squared momentum of the probe, M 
col 

is the invariant mass of 

the lightest color octet hadronic final state, F. 
I 
flav is the standard fractionally 
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charged quark model result, and F. co1 
L IS to be calculated from the diagrams shown 

in Fig. 2. In evaluating the diagrams, one uses the massive gluon spin sum 

-csp,, + PNP” /UG2, where the gluon mass IJG << nucleon mass M N inside the 

nudeonic environment. Outside the nucleon, however, the gluon mass would 

perhaps be several GeV as discussed in Section II. The result for F.“’ is 
I 

FcOl = r$/(Q* + “c* 2 

t 

’ 
1 )I 9 1 [ qx) + T$x)l 

+!++4-$) ++;~,~Q2,W2~ 

[ q$x) + $x) 1 

x p;;,(Q2, W2) 

(3.7a) 

(3.7b) 

where qi(x) is the momentum distribution function for the ith quark flavor, v(x) is 

the momentum distribution function for any one of the gluon partons, as usual 

x = Q2/2MN”, and P::, IS the scale-threshold factor signifying that scaling (up to 

log corrections) is not realized until W is several CeV above Mco,. In Section VII, 

we shall use the form employed in Ref. 20: 

P;;, (Q*, W) 
I 

q WI’ - Mco,)(l - (MC0,/WJ2) a . 

Q2’ I GeV2 

(3.8) 

Th 
We shall choose the exponent c( so that p,,, acquires a 75% saturation as W 

increases from M co, to Mco, + 2 GeV. 

Equations (3.7a-b) can be greatly simplified. First note that precocious 

scaling at SLAC for Q2 !. I GeV* seems to imply that quark and gluon parton 
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masses are much less than I GeV at Q2 = 1 GeV2, so that iiG(Q2 = 1 GeV2) 5 

100-300 MeV << I CeV. So, we expect Q*/1;,’ to exceed 10 and perhaps even 100 

at Q2 : 1 GeV and to grow even larger as Q2 increases. Next, note that not only 

must the gluon propagator mass riib be evaluated at q2, but in the operator product 

expansion for the standard hadronic tensor W vV(p, q), the gluon parton mass jiG 

2 20 
must also be evaluated at q . Hence, we can set “6 = jiG for our purposes. The 

result is that for Q2 > 1-2 GeV2, Eqs. (3.7a-b) reduce to the following simple 

expressions for the nucleon color structure functions: 

FCOl - 0 
1 - 

(3.9a) 

FCOl 
2 2 ; xv(x) PC,, Th (Q2, W2) . (3.9b) 

Note that the main contribution to Fy’ comes from the gluon partons and not 

from quark or scalar partons. And since the gluons reside at x < 0.3, one would 

expect color production to be a characteristically low x phenomenon. Also, note in 

Th 
Eq. (3.9b) that, aside from the factor p co, which has little effect anyway, scaling 

(up to log corrections) is retrieved. Had it not been for the damping factor AL in 

Eqs. (3.7a-b) this would not have been so, and Fc”’ would have had a bad high Q2 

behavior. Thus we see the utility of the gauge approach to integrally charged 

quarks and spin-l gluon partons. 

NOW that we have the lowest order formulae for the nucleon color structure 

functions in terms of parton distributions, in the next section we begin a discussion 

of the Altarelli-Parisi method for calculating the higher order corrections. 
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IV. ALTARELLI-PARIS1 PARTON TRANSITION FUNCTIONS 
WITH MASSIVE GLUONS 

The Altarelli-Parisi program 
13 

for calculating higher order Q*-dependent 

corrections to parton distribution functions is well known in the case of massless 

gluons. The evolution in Q2 is obtained by solving the following equations: 

dqNS(X’ t, 
dt 

cx(Q’) 
2a r 

‘!!Y q 
x Y NS 

(Y, t)Pqq$J 

dq+, t) 
dt 

dG(x, t) 
dt q,(y, t)P,,(;) + G(y, tPGG(;) 1 

where f is the number of quark flavors and 

qNs = qi(x) - qj(x), etc. 

4s = 1 q&x) + g(x) 
i 

a (Q2) = gy 

, 

(4.la) 

(4.lb) 

, (4.lc) 

(4.2a) 

(4.2b) 

(4.2~) 

(4.2d) 

with qNs and qs denoting flavor nonsinglet and singlet quark distributions, res- 

pectively, i and j denoting quark flavors, and u being the renormalization point of 

the theory. 
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We refer to the PBA( z as the parton transition functions. In the standard ) 

massless gluon QCD theory, they can be derived from the elementary QCD vertices 

alone. As such, o/271 PBA(z) can readily be interpreted as the probability density 

per unit t of finding inside parton A a parton B with fraction z of A’s momentum. 

In order to obtain PBA(z) f rom the elementary vertices alone one uses a 

noncovariant polarization sum over only transverse gluons and neglect diagrams 

wherein partons are emitted after the probe scatters off of the initial parton. 

However, this procedure is not well suited for the massive gluon Pati-Salam model, 

since gluons in this case have longitudinal in addition to transverse components. 

Ellis et al.2I have discussed the Altarelli-Parisi program in an entirely covariant 

framework, and it is their approach which we discuss in the case of massive 

gluons. 
22 

To illustrate the procedure using massless gluons, we show the diagrams for 

calculating P 
w 

in Fig. 3. In the massless gluon theory the probe is the photon y. 

One calculates the differential scattering cross-section to order o in the strong 

coupling constant for scattering y off of the quark parton of ith flavor carrying 

momentum p,. For simplicity consider only the cross-section which is projected 

out by contracting the indices of the probe with (-g,“). In terms of the parton 

“scaling variable” 

QZ 
z = 2p,.q 

(4.3) 

one gets 21 

’ 

(4.4) 
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where the distribution (1 - z)+-l is defined by the following: 

1 
dz (e 5 oldz ‘w 

s 
, (4.5) 

with h(z) being any test function regular at the endpoints. 

The function of interest P 
w 

is the coefficient of the infrared singular factor 

In q2/pL2 
i ) 

occurring in Eq. (4.4). Thus, an algorithm for calculating the PBA’s is 

simply to extract the coefficients of the infrared singular factors in the appro- 

priate differential scattering cross sections. 

For the case of massive gluons, the analogy is that to each order in CL we 

extract the coefficient of the leading power in -q2/uG2. However, one must keep 

in mind that diagrams such as are shown in Fig. 3 are only an isolated part of the 

overall lepton-parton scattering process. Hence, the large -q2 behavior in the 

overall process does not present a problem since it is damped by the previously 

discussed factor A2 [cf. Eq. (3.2) 1. In the massless gluon case discussed above, the 

infrared singular factors are not damped but are absorbed into the bare parton 

distribution functions to form finite renormalized parton distribution functions. 
21 

Note that one must not think that terms of higher order in a dominate those of 

lower order in o as a result of the powers of -q2/uG2. Even for the case of 

confined QCD one cannot naively look at the In (q2/p 2, factor from the order a 
1 

contributions in Fig. 3 to conclude that they are larger than the lowest order parton 

model result (first diagram of Fig. 3). For each order in a. one must retain the 

leading In (q2/p1*) contribution. This is analogous to what we do in the Pati-Salam 

theory. To find corrections to the lowest order probe-parton scattering, we 

calculate the order CI diagrams and retain the terms of leading order in -q2/pG2. A 

comparison of parton model diagrams to the appropriate ones in the operator 

product formalism makes the above immediately clear. 
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We can now calculate Pqq(z) in the massive gluon theory above the color 

threshold where the probe sees the color charges of the partons. The relevant 

diagrams are the same as in the massless gluon case and are shown in Fig. 3. Using 

the above algorithm, we calculate the cross section do qq/dz for scattering the 

probe U”--the color piece of both the photon and its orthogonal partner &-off the 

initial parton to order a. Since the red, yellow, blue quark color electric charges 

are -2/3, l/3, l/3, respectively, we take -ieyu(2*3-B to) as our U’qq vertex, where 

to = 5(JJt3 + t8) 

obeying 

[tO,tji=if. k 
o,kr 

Tr(t”to) = % 

(4.6a) 

(4.6b) 

(4.&I 

with 

fojk : fi(J7r 
3k + f8jk) (4.6d) 

and t’ being the usual SU(3) matrices. For the gluon partons CC), the U”GaGb 

vertex carries the color factor f cab . 

All relevant phase space factors are contained in ref. 21. We define 

Y = PL*P2/PI*q , (4.7) 
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where PL,~ are the parton momenta as indicated in the figures. First express all 

amplitudes in terms of the usual s, t, u, q2, pf 2 dropping terms O(p 2 
2 , P,~). They 

2 2 are then expressed in terms of p, , q , y, z using Eqs. (4.3) and (4.7) and the 

following: 

s q p 
I * + 2p1. q(l - 2) (4.8a) 

t = -2p,.q(l -y) (4.8b) 

u = Pl 2 - 2YPL*q (4.8~) 

Finally, we neglect all terms of O(p12), being careful to retain only the leading 

terms in q*/p 
2 

L , and perform the y integration from 0 to y = 1 - p 2/q2 (see ref. 
1 

21). 

After performing the appropriate average (sum) over initial (final) spin and 

color for the diagrams in Fig. 3, we obtain 

yielding 

“_%4 _ e2a &II 
dz -2-f 2 cr 

PG 

Thus, 

Pqq(z) = & 

(4.9) 

(4.10) 

(4.11) 
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We show the parton diagrams for calculating P Gq(z), PqG(z), and PGG(.z) in 

Figs. 4, 5, and 6, respectively. The calculations are as outlined above and are quite 

laborious. The results are 

PGq(Z) q v 

PqG(Z) = & 

z3 - 5a2 + 2& _ II 
4 3 

z(l - z)* 

PGG(Z) = $ ;+‘-I 
z z2 

The Higgs sector of the theory can be neglected as has been discussed 

previously. 
22,23 

Also, all the results have been checked to be gauge invariant. We 

find that the PBA’s do not obey the same set of symmetry relations as for the 

massless case. This is because the results cannot be derived from the elementary 

QCD vertices alone as was done in Ref. 13. Perhaps they can no longer simply be 

interpreted as probability densities. 

Before going ahead with the results of this section and calculating higher 

order corrections to parton distributions above the color production threshold, in 

the next section we first discuss the phenomenology of parton distributions below 

the color threshold. 

(4.12a) 

(4.12b) 

(4.12~) 
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V. PARTON DISTRIBUTIONS BELOW THE COLOR THRESHOLD 

Before discussing the solutions to the Altarelli-Parisi Eqs. (4.1) above the 

color threshold, we first discuss their solutions in the absence of color production. 

This would correspond to the Fi f’av discussed in Sec. III [cf. Eq. (3.511 . For the 

valence quarks, we use the parametrizations of Buras and Gaemers. 24 
Define 

u Zuv+<, d=dv+5, and;= ;i :: s 2 7 E 6, where the subscripts denote valence 

quark distributions and 5 denotes the sea. The Buras-Gaemers valence quark 

distributions are as follows: 

xuv(x, Q2) + xd$, Q2) = B(,, 3 
,' 1 + Q*) 

xq+, - xjq2 

2 
XdV(Xt Q ) I 

= B(q3, I + q4Jx 
n3 

(I-XY4 

with 

q1 = 0.70 - 0.176s 

n 2 = 2.60 + 0.80s 

rl 3 = 0.85 - 0.24s 

q4 = 3.35 + 0.816s 

where 

s = ln[ $$::, ] 

(5.la) 

(5.lb) 

(5.2a) 

(5.2b) 

(5.2~) 

(5.2d) 

(5.3) 
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Qo2 = 1.8 GeV2, A = 0.5 GeV, and B(ni, I + T)~+~) is the Euler beta function which 

insures baryon number conservation for all values of Q2. 

For the sea quarks and gluons, we use the parametrizations of Owens and 

Reya 
I4 

and add in the contributions from the charmed sea. The Owens-Reya sea 

and gluon distributions are written as follows: 

xc(x, Q*) = A&l - x?’ + A; (I - x+ + Bse 
- csx 

(5.4a) 

xC(x, Q*) = Ag(l - x) % ng + A’g(l -xl +B e 
-cgx 

g 
, (5.4b) 

where the coefficients and exponents are written as the following polynomials in s: 

Ai q Ai + A/‘), + Ait2)s2 

‘li = ni(o) + n i(% + n iw 

A; = A$ + AfC2)s2 

8. z B.(‘)s + B.(2)s2 
I I I 

(5.5a) 

(5.5b) 

(5.5c) 

(5.5d) 

(5.5e) 

Ci = c-i(O) + Ci(‘)S + Ci(2)S2 , (5.5f) 

with these coefficients being displayed in Table I. The above parametrizations 

should be valid over the region 0.02 -< x 2 0.8. 
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Using the above parametrizations, typically about 6% of the parent nucleon’s 

momentum is unaccounted for for Q* up to ~100 GeV’. We can reduce this to 1 to 

2% by induding the Buras-Gaemers charmed sea C z c + 7 = 2~:~~ 

< C(Q*) ‘* [ 1 -2 

xC(x, Q2) = <C(Q*)>, cl _ x) -Q2)>j , (5.6) 

where 

<C(Q2) >n 3 
/- 

1 
dx x “-k(x, Q*) , _ n> 2 

0 
(5.7) 

is the charmed quark’s nth moment which we calculate using the Owens-Reya 

strange quark distribution and the well-known QCD formula 25 

<c(Q2bn - <s(Q*)>, = 
c 

<c(Q;b n - <s(Q$>,,]exp [-$.&s] , (5.8) 

with d& being proportional to the anomalous dimension of the spin n nonsinglet 

operator as defined in Ref. 12 and first calculated in Refs. 1 and 2. We take 

<c(Q&, = 0. 

We plot in Figs. 7(a-f) the proton structure function F2 p~~‘~‘(x, Q*) calculated 

using the above parton distribution functions for x = 0.05882, 0.10, 0.22222, 

0.28571, 0.40, and 0.66667, respectively. The data points are taken from Gordon et 

a1.26 For comparison, we display Ft’f’av (x, Q2) calculated from the Owens-Reya 

distributions taking c(x, Q*) = 0. Gordon et al. fit their full F;‘f’av data over the 

ranges 0 < x -< 0.7 and 1 GeV2( Q2_1. 65 GeV* with the following phenomenologicaf 

formula which we also show In Figs. 7(2-f): 
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F;‘f’av(x, Q2) = [ i ai(l - x9] ( -$ )c1+c2’n(1-x) , (5.9) 

where 

(” 2 
‘0 

= 3 GeV2 (5.10a) 

al = 0.0126 tO.0147 (5.10b) 

a 2 = 0.9986 co.0394 (5.lOc) 

a3 = -0.6225 + 0.0278 (5.10d) 

c1 q 0.1577 to.0095 (5.10e) 

c2 = 0.5329 '0.0195 (5.10f) 

In general, we find that the Owens-Reya parton distributions with charm added in 

the manner we described above gives better agreement with both the data points of 

Gordon et ai. and their phenomenological formula than the Owens-Reya distri- 

butions without charm. Moreover, the difference between the proton flavor 

structure functions as calculated from Owens-Reya with charm and from the 

phenomenologicai formula of Gordon et al. is typically less than the experimental 

errors in the data. 

flav Now that we have parton distributions which describe F2 well, in the next 

section we proceed to calculate the QCD corrections to F col 
2. 
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VI. HIGHER ORDER CORRECTIONS TO THE 
NUCLEON COLOR STRUCTURE FUNCTION 

So far, we have just concerned ourselves with parton distributions necessary 

to describe F:av. To include the possibility of color production, we need the 

leading order QCD correction to Eq. (3.9b); therefore, we must solve the Altarelli- 

Parisi evolution equations [cf. Eqs. (4.la-cl] for C(x, Q2) = 8v(x, Q2) both below 

and above the color threshold Qth for fixed x. Below color threshold, G(x, Q2) 

evolves according to the conventional QCD formalism; 23 
however, above color 

threshold, the evolution of G(x, Q2) is governed by the new P 
Gq 

and PGG calcu- 

lated in Sec. IV. 

To solve these evolution equations, we follow the procedure of Feynman, 

Fields and ROSS~~ and first define 

A@B 5 
/ 

l dz 

x 
y- A($)B(z) (6.1) 

Then we can write the Altarelli-Parisi evolution equations for the parton distri- 

butions above color threshold as follows: 

$ [I:;] = [ 1: ‘:““i @ [ ;;;;:] , (6.2) 

where the PBA are given in Eqs. (4.1 I) and (4.12), Z is the total singlet quark distri- 

bution summed over all flavors, nf is the number of quark flavors which we take to 

be four, and 
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2 
1c = 2 

In 
(11 - =jnf) 

(6.3) 

Equation (6.2) can be written symbolically as 

2 23 (x, Q2) = 9 8 G3 (z, Q*) 

with 

GZ (x, Q2) E C(x, Q2) [ 1 Gk Q*) 

9(x, Q2) z pqq 2nfPqG 

‘Gq ‘GG 1 
Then the solution to Eq. (6.4) can be written formally as 

f 6.4) 

(6.5a) 

(6.5b) 

Gi? (x, Q2) = exp (~9 @)C2 (Q:,) (6.6) 

We only need the gluon part of the solution since only the gluon distribution 

v(x, Q 
2 

) Z l/8 G(x, Q*) contributes to F co1 
2 

at large Q2. One must also keep in mind 

that Eq. (6.6) is applicable only for Q* > Q2 _ Th and that the boundary condition for 

Eq. (6.4) is chosen so that G(x, Q*) from the gluon evolution below color threshold 

just matches that from Eq. (6.6) at Q* = 04. 

After expanding Eq. (6.6) in K and doing the integrals numerically, we find 

that for our purposes it is sufficient to retain only the leading and order K terms. 
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We find that the term of order K is typically only a few percent of the leading term 

2 
for Q,,( Q* < 100 GeV2. - 

co1 
As mentioned in the introduction, to obtain an expression for F2 with its 

QCD corrections, one simply replaces v(x) in Eq. (3.9b) by the v(x, Q2) obtained in 

this section. Having done this, in the next section we show the effects of color 

production on the isoscalar nucleon structure function. 

VII. QCD CORRECTED EFFECTS OF COLOR PRODUCTION 
ON THE NUCLEON STRUCTURE FUNCTION 

In this section we study the nucleon isoscalar structure function F2, which as 

we recall from Eq. (3.5) is composed of both flavor F fl av 
2 

and color Fy’ pieces. In 

Sets. V and VI we discussed the QCD corrections to Fyav and F;“, respectively. 

Now, it would be interesting to compare our results with data taken from Ball et 

al.3 In Figs. X(a-e) we plot F2 per nucleon vs. Q2 at x = 0.11, 0.16, 0.21, 0.26, and 

0.33, respectively, assuming Mco, = 9 GeV. Note in particular that for x = 0.16 and 

0.21 the Pati-Salam theory with our parton parametrizations does not agree with 

the large increases of F2 reported by Ball et al. Also note that for x > 0.26, the 

effects due to color production are quite small and virtually impossible to detect 

fl av experimentally; thus, one would expect the data to lie along the F2 curve which 

the data points of Ball et al. do for these x values. Lehman4 has discussed the data 

of Ball et al. from the point of view of color excitation; however, we do not predict 

as large an increase in F 
2 

due to color production as does Lehman. It is important 

to note that the anomalously large data points of Ball et al. have been reanalyzed 

by Ball 28 and lowered to values more in line with the conventional QCD prediction. 

In Figs. 9(a-g) we show the percentage increase in F2 above the conventional 

QCD prediction for an isoscalar nucleon target due to color production. We 

examine the values M co, = 9, 11, 15, 20 GeV at x = 0.03, 0.04, 0.05, 0.10, 0.15, 0.20, 
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0.25. These graphs tell us that due to the relative size of the experimental errors, 

color production would indeed be a difficult effect to observe for all but the 

smallest values of x; preferably x -< 0.05. 

VIII. DISCUSSION AND SUMMARY 

We have discussed deep-inelastic scattering in detail within the context of 

the Pati-Salam model which allows for the possibility of producing color nonsinglet 

hadronic states. 
flav 

Leading order QCD effects were calculated for F2 
COI 

and F2 , 

and the expected percentage increase due to color production in the nucleon iso- 

scalar structure function F2 was presented. The data points of Ball et al. 3 do not 

agree with our theoretical predictions assuming Mco, s 9 CeV. However, it is clear 

that if one is to observe color production, it is necessary to concentrate on small x 

values, preferably < 0.05. One problem in trying to observe color production is 

that, aside from very small values of x -< 0.05, the increase in F2 due to color 

production may be less than the experimental errors and thus may be lost in the 

noise. Since we cannot predict MC,, theoretically, in Figs. 9(a-g) we showed the 

percentage increase in F2 assuming various values of Mco,. In any event, we have 

worked out the theory sufficiently so that the increase in F2 due to any value of 

M co, can be easily calculated. 

We note that the Berkeley-FNAL-Princeton Collaboration and the European 

Muon Collaboration6 have not seen the F2 enhancement of Ball et al. However, a 

word of caution is that none of the more recent experiments give a complete set of 

data spanning the region 1 to 2 CeV2 2 Q2 -< 50 GeV2 for x I< 0.05 where we predict 

color production would most noticeably manifest itself. Until this region spanning 

both low and high Q2 for small x is exhausted, we do not believe that color 

production can be conclusively ruled out. 
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A(o) A(1) A(2) i A’(1) / A’(*) 

--~-.--..; 
/ 

n(o) i 
I n(1) 

n(2) 
: 

I--‘--- - 

xc ~ 0.1467 I -0.1211 ~ 0.0274 ; 0.1853 -0.0608 I 7.0 0.0217 0.0037 

XG _ 2.4120 / -1.9845 i 0.4443 i 3.6363 j -1.4146 5.0 1.5464 ! -0.5287 

I 
I $(O) 1 ,,(I) / ,,(2) j B(1) j B(2) c(o) &I) (52) 

1 / ! 

I xc 1 9.5041 1.0165 i -0.1049 / 0.1682 0.4473 25.8997 3.9572 1.6331 

j XG 13.8237 0.7914 / -0.2873 1 7.6609 -1.4595 36.7928112.5884 -1.1536 - 

Table I. Values for the parameters defined by Eqs. (5.5a-f) for the Owens-Reya 
parametrizations of the sea and gluon parton distributions. 
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Fig. I: 

Fig. 2: 

Fig. 3: 

Fig. 4: 

Fig. 5: 

Fig. 6: 

Fig. 7: 

Fig. 8: 

Fig. 9: 

FIGURE CAPTIONS 

Order e2 diagrams for A(I1h’ + II + X co,). Coupling constants 

at respective vertices are shown in parentheses. 

Diagrams for F.“‘. 
I 

One must sum over the relevant types of 

partons. 

Diagrams for P 
vi 

Solid lines represent quarks, wavy lines 

represent the probe, and curly lines represent gluons. 

Diagram for P 
w 

Diagrams for P 
qG’ 

Diagrams for PGG. 

(a-f) Proton flavor structure function F;‘f’av(x, Q2) vs. Q2 at 

x = 0.05882, 0.10, 0.22222, 0.28571, 0.40, and 0.66667, respec- 

tively, calculated using Owens-Reya parton distributions both 

with charm (solid lines) and without charm (dotted lines), and 

using the phenomenological formula (dashed lines) of Gordon 

et al. (Ref. 26). Data points are from Gordon et al. 

(a-e) F2 per nucleon for an isoscalar target at x = 0.11, 0.16, 

0.21, 0.26, and 0.33, respectively, assuming Mco, : 9 GeV. The 

solid curves are the usual QCD result and the dashed curves 

include the contribution from F co1 
2 . The data points are from 

Ball et al. (see Ref. 3). 

(a-g) Percentage increase in F2 above the conventional QCD 

prediction for x q 0.03, 0.04, 0.05, 0.10, 0.15, 0.20, and 0.25, 

respectively, and Mco, = 9 (solid line), 11 (dashed line), 15 

(dotted line), and 20 (dash-dotted line) GeV. 
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